

Outline

Neutral-meson mixing

FNAL/MILC *D*-meson mixing analysis

Correlator analysis

Chiral-cont. extrap + Error analysis

Outlook

Flavor physics on the lattice

Testing Standard Model through high precision

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ \pi \to \ell \nu & K \to \ell \nu & B \to \tau \nu \\ n \to pe^-\overline{\nu} & K \to \pi \ell \nu & B \to \pi \ell \nu \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \\ |V_{td}| & |V_{ts}| & |V_{tb}| \\ B_0 \text{ mixing} & B_s \text{ mixing} & \text{no hadrons} \end{pmatrix}$$

Standard Model parameters (total 26): Gauge coupling, Yukawa coupling (quark and lepton masses), **CKM** and PMNS matrix elements, Higgs v.e.v. (EWSB scale), Higgs mass, θ_W , θ_{QCD}

Neutral-meson mixing

Separation of scale:

QCD calculation is independent of high energy theory High energy theory = electroweak (SM) or new physics (BSM)

At hadronic scale, QCD is non-perturbative

Standard Model short-distance

Up-type quark mixing (unlike Kaon and B-meson)

CKM suppressed

• b-quark suppressed by $|V_{ub}V_{cb}^*|^2 \sim 0.2^{10}$

GIM suppressed

• d- and s-quark diagrams cancel in flavor SU(3) limit **Very small contribution** (unlike Kaon and *B*-meson)

Standard Model long-distance

Proceeds via on-shell states Although b-quark CKM sup. @ 0.2^{10}

- No obvious GIM suppression
- Hadronize via d- and s-quark

Via pions: $|V_{cd}V_{ud}^*|^2 \sim 0.2^2$

Via kaons: $|V_{cs}V_{us}^*|^2 \sim 0.2^2$

"In qualitative accord with experiment"

Possibly dominant

BSM contribution

BSM enters in short-distance only

- Possibly BSM dominant
- Many BSM models, some receive strongest constraint from D-mixing

Mixing operators

$$\Delta m = C_{\rm NP}^i \left\langle D | \mathcal{O}_i | \bar{D} \right\rangle$$

Basis of 4-quark operators

$$\mathcal{O}_{1} = \bar{\Psi}^{a} \gamma^{\mu} L \psi^{a} \bar{\Psi}^{b} \gamma^{\mu} L \psi^{b}$$

$$\mathcal{O}_{2} = \bar{\Psi}^{a} L \psi^{a} \bar{\Psi}^{b} L \psi^{b}$$

$$\mathcal{O}_{3} = \bar{\Psi}^{a} L \psi^{b} \bar{\Psi}^{b} L \psi^{a}$$

$$\mathcal{O}_{4} = \bar{\Psi}^{a} L \psi^{a} \bar{\Psi}^{b} R \psi^{a}$$

$$\mathcal{O}_{5} = \bar{\Psi}^{a} L \psi^{b} \bar{\Psi}^{b} R \psi^{a}$$

SM (V-A) current

NP only. Right-handed

Only 5 matrix elements. Model independent.

BSM mixing and experiment

$$\Delta M = 0.0044(20)[\text{ps}^{-1}]$$

 $\sim 45\%$

[1402.1664v1]

Exp. err. $\sim 10\%$ error by ~ 2020

$$\Delta M = \langle D | \mathcal{H}_{NP} | \bar{D} \rangle$$
$$= C_{NP}^{i} \langle D | \mathcal{O}_{i} | \bar{D} \rangle$$

$$C_{\mathrm{NP}}^{i} = \frac{F_{i}L_{i}}{\Lambda^{2}}$$

$$F_i \sim L_i \sim 1$$

 F_i Flavor structure

 L_i Loop factor

NP scale lower bound

[1403.7302]

FNAL/MILC D-meson mixing analysis

Correlator analysis

Data
Correlator fits
Renormalization

Lattice actions

Gluon action

 $O(a^2)$ improved. Errors start at $O(\alpha_s a^2, a^4)$.

Light-quark action (valence and sea)

 $O(a^2)$ improved. Errors start at $O(\alpha_s a^2, a^4)$.

Preserve chiral symmetry.

Have spurious taste degrees-of-freedom.

Heavy-quark action (valence)

O(a) improved. Errors start at $O(\alpha_s a, a^2)$.

Destroys chiral symmetry.

No spurious taste degrees-of-freedom.

MILC gauge configurations

Continuum extrap.

4 lattice spacings

Chiral extrapolation

Multiple sea quark masses per lattice spacing

Light-quark propagators

Partially-quenched chiral extrapolation
7 to 8 valence masses
Highly correlated*

Other parameters

Spatial box size

$$m_{\pi}L \gtrsim 4$$

Temporal length

 $2 \times \text{spatial } L$

Heavy-quark propagators

Improved Wilson fermion on Staggered sea

Set charm quark mass to $\sim m_c$

→ unknown (small) tuning error fixed later

One charm quark mass per gauge configuration

Correlation functions

D-meson lattice operators

$$D(x) = \bar{\psi}\gamma_5\Psi(x)$$

$$\bar{D}(x) = \bar{\Psi}\gamma_5\psi(x)$$

Correlators

$$C^{\text{2pt}}(t,0) = \sum_{x} \langle T \{ \bar{D}(x)D(0) \} \rangle \underline{\hspace{1cm}}$$

$$C_i^{3\text{pt}}(t_1, t_2, 0) = \sum_{x_1, x_2} \langle T \{ D(x_2) \mathcal{O}_i(0) D(x_1) \} \rangle$$

Fit functions

$$C^{\text{2pt}}(t) = \sum_{n} (-1)^{n(t+1)} \frac{Z_n^{\dagger} Z_n}{2E_n} \left(e^{-E_n t} + e^{-E_n (T-t)} \right)$$

$$C_i^{3\text{pt}}(t_1, t_2) = \sum_{m,n} (-1)^{n(t_2+1)} (-1)^{m(|t_1|+1)} \frac{\langle n|\mathcal{O}_i|m\rangle Z_n^{\dagger} Z_m}{4E_n E_m} e^{-E_n t_2} e^{-E_m |t_1|}$$

 $D = t = t_1$ $t = t_2$

Fit correlation functions (i)

Taking ratios, and scaling data is sufficient to get a (crude) value for the matrix elements.

Fit correlation functions (ii)

- 1) Robust error estimate through fitting
- 2) Fit towards higher signal region

Constrained curve fitting with Bayesian priors

$$\chi^2 \to \chi^2 + \sum_i \frac{(\rho_i - \mu_i)^2}{\sigma_i^2}$$

Prior information guide fits
Treated like data*

parameters → distributions

 $p_i \to \mu_i \pm \sigma_i$

Motivate priors!!!

Motivate priors (ground states)

$$C^{\text{2pt}}(t) = \sum_{n} (-1)^{n(t+1)} \frac{Z_n^{\dagger} Z_n}{2E_n} \left(e^{-E_n t} + e^{-E_n (T-t)} \right)$$

$$C_i^{3\text{pt}}(t_1, t_2) = \sum_{m,n} (-1)^{n(t_2+1)} (-1)^{m(|t_1|+1)} \frac{\langle n|\mathcal{O}_i|m\rangle Z_n^{\dagger} Z_m}{4E_n E_m} e^{-E_n t_2} e^{-E_m |t_1|}$$

Want **data** to determine $E_0, Z_0, \langle 0|\mathcal{O}_i|0\rangle$

Ground state priors are unconstraining

Motivated by staring at the data

Motivate priors (excited states)

$$Z_n \simeq (0.5 \pm 1.0) Z_0$$

Heavy-quark smearing

$$\langle n|\mathcal{O}_i|m\rangle \simeq (0\pm 1)\,\langle 0|\mathcal{O}_i|0\rangle$$

Correlator fit region

Simultaneous fit

- Preserve correlation
- Disentangle Z_0

Bi-diagonal fit

- Statistics limited
- Preserve 0⁺ excited state information

20

Fit quality

Distributions agree for the ground state matrix element fit parameter

Priors are not constraining for this parameter

Stability plots for t_{min} , t_{max} , smearing, # excited states in back up slides

Mostly non-perturbative renorm.

- One-loop matching between lattice and continuum.
- Lattice regularization to \overline{MS} -NDR scheme at 3GeV
- BBGLN basis of Dirac operators

One-loop renormalization expression:

$$\langle \mathcal{O}_i \rangle^R = Z_V^{hh} Z_V^{ll} \left[(1 + \alpha_s \zeta_{ii}) \langle \mathcal{O}_i \rangle^{\text{lat.}} + \alpha_s \zeta_{ij} \langle \mathcal{O}_j \rangle^{\text{lat.}} \right]$$

NP coefficients
Account for WF renorm.
to all order

PT coefficient
Account for vertex
renormalization

Mixing under renormalization

Errors start at $O(\alpha_s^2, \alpha_s \Lambda_{\rm QCD}/m_c)$

Result of correlator fits

FNAL/MILC D-meson mixing analysis

Fit function
Stability of fit
Error breakdown

Chiral-continuum extrapolation and systematic error analysis

Chiral-continuum extrapolation

Extrapolate to physical point

Control systematic uncertainty

Effective theory lends understand to truncation errors

Extrapolation to physical point

Partially-quenched SU(3)

$$F_i^{\chi \text{ NLO}} = \beta_i \left(1 + \frac{\mathcal{W}_{u\bar{c}} + \mathcal{W}_{c\bar{u}}}{2} + \mathcal{T}_u^{(i)} + \tilde{\mathcal{T}}_u^{(i)} + \text{analytic terms} \right)$$

$$+ \beta_i' \left(\mathcal{Q}_u^{(i)} + \tilde{\mathcal{Q}}_u^{(i)} \right)$$
 Staggered

Next-to-leading order

 $ilde{\mathcal{T}}$ and $ilde{\mathcal{Q}}$ are the NLO wrong-spin taste-mixing terms Wrong-spin because the Dirac structure is in general different from \mathcal{O}_i Taste-mixing because taste-index between the two bilinears are summed over Copy-mixing also, but copy symmetry is exact

Systematic error analysis

Sources of systematic error:

Chiral logarithms Truncation errors

Chiral-continuum extrapolation

Heavy-quark discretization
Renormalization
Heavy-quark and light-quark masses
Finite volume
Scale error

Other systematics

Bayesian statistics treat systematics like statistical error

27

Analytic terms and HM χPT

Chiral fit function includes NNLO analytic terms.

At NLO: a^2 term

At NNLO: a^4 term

light quark and gluon

discretization error

NNLO mass dependent terms accounts for NNLO chiral logarithms truncation.

$$F_{\text{analytic}} = \sum_{j} c_{j} P_{j}(m_{u}, m_{l}, m_{s}, a^{2})$$

Work at leading order in $HM\chi PT$

Option to include leading $1/M_D$ errors in χ PT

Heavy quark discretization errors

Operator improvement

$$\Psi(x) = e^{M_1 a/2} \left[1 + a d_1 \boldsymbol{\gamma} \cdot \boldsymbol{D} + \frac{1}{2} a^2 \left(d_2 \Delta^{(3)} + i d_B \boldsymbol{\Sigma} \cdot \boldsymbol{B} + d_E \boldsymbol{\alpha} \cdot \boldsymbol{E} \right) \right] \psi(x)$$

"Heavy-quark rotation"
Operator & action both tree-level a improved

Tree-level a^2

[9604004]

ds are adjusted by matching lattice and continuum spinors.

Action @ a^2 , a^3 from Oktay Kronfeld (2008) [0803.0523]

 $\alpha_s a$ corrections are estimated

Main result of the Massive Fermions paper:

Matching finite @ $am_0 \rightarrow 0$ and zero @ $am_0 \rightarrow \infty$

$$F_{\text{HQ disc.}} = \sum_{i} z_i (a\Lambda_{\text{HQ}})^{s_i} f_i(m_0 a)$$

Renormalization errors

Fit for α_s^2 renormalization errors. HQ errors include $\alpha_s \Lambda_{\rm QCD}/m_c$.

$$\langle D|\mathcal{O}_{i}|\bar{D}\rangle^{R} = Z_{V}^{hh}Z_{V}^{ll}\left[\left(1 + \frac{\alpha_{s}\zeta_{ii} + \alpha_{s}^{2}\xi_{ii} + \mathcal{O}(\alpha_{s}^{3})\right)\langle D|\mathcal{O}_{i}|\bar{D}\rangle\right] + \left(\frac{\alpha_{s}\zeta_{ij} + \alpha_{s}^{2}\xi_{ij} + \mathcal{O}(\alpha_{s}^{3})\right)\langle D|\mathcal{O}_{j}|\bar{D}\rangle\right]$$

Renormalize data: $\langle \mathcal{O}_i \rangle^R = Z_V^{hh} Z_V^{ll} \left[(1 + \alpha_s \zeta_{ii}) \langle \mathcal{O}_i \rangle^{\text{lat.}} + \alpha_s \zeta_{ij} \langle \mathcal{O}_j \rangle^{\text{lat.}} \right]$ Fix scale, scheme, evanescent operators $\zeta \simeq \mathrm{O}(1)$

Fit
$$\alpha_s^2$$
: $F_i^{\mathrm{renorm}} = Z_V^{hh} Z_V^{ll} \left[\alpha_s^2 \xi_{ii} \left\langle D | \mathcal{O}_i | \bar{D} \right\rangle + \alpha_s^2 \xi_{ij} \left\langle D | \mathcal{O}_j | \bar{D} \right\rangle \right]$ For same scale, scheme, etc... expect $\xi = 0 \pm 1$

Power counting ∼6.4%

Heavy-quark tuning

Perform the shift $\,F_i^\kappa=-\sigma_i\times 1/\Delta M_2\,\,$ @ the level of ChiPT $\sigma_i\,\,$ and $1/\Delta M_2\,\,$ are introduced as priors

Parametric errors

A list of the largest parametric errors

From $D^* \to D\pi$ studies DD^* form doublet under HQ spin symmetry

$$r_1/a$$
 Errors with correlations are included

 r_1

Final fit function

$$F_{i} = F_{i}^{\text{NLO }\chi \text{PT}} + F_{i}^{\text{NNLO analy.}}$$
$$+ F_{i}^{\text{HQ}} + F_{i}^{\alpha_{s}^{2} \text{ renorm.}} - F_{i}^{\kappa}$$

- + finite volume correction
- + parametric errors

(will) Fit to all 5 operators to preserve correlations Final error budget is a covariance matrix

This fit accounts for <u>every</u> source of error that we would like to include

Chiral-continuum extrapolation

Renormalization stability plot

$$\langle D|\mathcal{O}_{i}|\bar{D}\rangle^{R} = Z_{V}^{hh}Z_{V}^{ll}\left[\left(1 + \frac{\alpha_{s}\zeta_{ii} + \alpha_{s}^{2}\xi_{ii} + \mathcal{O}(\alpha_{s}^{3})\right)\langle D|\mathcal{O}_{i}|\bar{D}\rangle\right] + \left(\frac{\alpha_{s}\zeta_{ij} + \alpha_{s}^{2}\xi_{ij} + \mathcal{O}(\alpha_{s}^{3})\right)\langle D|\mathcal{O}_{j}|\bar{D}\rangle\right]$$

Error bar increases with α_s^2 terms in fit Fit remains unchanged when adding α_s^3 terms in fit

One-loop contribution $\sim 20\%$ Power counting error estimate $\sim 6.5\%$ Error from fit 3 to 6%. Operator dependent.

Preliminary error budget

	$ \mathcal{O}_1 $	\mathcal{O}_2	\mathcal{O}_3	\mathcal{O}_4	\mathcal{O}_5
Statistical	4.2%	2.4%	3.8%	2.7%	4.7%
Total χ -cont. err.	2.3%	2.4%	2.3%	1.3%	3.3%
Heavy-quark disc.	1.9%	1.8%	1.4%	2.1%	1.6%
Renormalization	5.7%	3.0%	3.9%	3.2%	6.5%
HQ mistuning	0.1%	0.0%	0.0%	0.0%	0.0%
LQ mass uncert.	0.3%	0.6%	0.2%	0.5%	0.3%
r_1/a	1.2%	1.4%	1.6%	1.6%	2.0%
r_1	2.1%	2.1%	2.1%	2.1%	2.1%
Total error	8.1%	5.2%	6.7%	5.6%	9.3%

Goal of 10% total error to match projected experimental error for the next decade

Preliminary results

Outlook

Paper!

Bag parameters w/ Ethan

No plans for HISQ. Errors are good.

Data

MILC asqtad ensembles

a(fm)	$\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$	$m_{\pi}L$	am_l/am_s	$m_{\pi}({ m MeV})$	$N_{ m confs}$	r_1/a
0.12	$24^3 \times 64$	3.84	0.1	274	2099	2.647
0.12	$20^4 \times 64$	3.78	0.14	325	2110	2.635
0.12	$20^4 \times 64$	6.27	0.2	388	2259	2.618
0.12	$20^4 \times 64$	6.22	0.4	557	2052	2.644
0.09	$64^3 \times 64$	4.80	0.05	176	791	3.691
0.09	$40^4 \times 64$	4.21	0.1	249	1015	3.695
0.09	$32^4 \times 64$	4.11	0.14	308	984	3.697
0.09	$28^4 \times 64$	4.14	0.2	354	1931	3.699
0.09	$28^4 \times 64$	5.78	0.4	506	1996	3.712
0.06	$64^3 \times 144$	4.27	0.1	223	827	5.281
0.06	$56^4 \times 144$	4.39	0.14	264	801	5.292
0.06	$48^4 \times 144$	4.49	0.2	317	673	5.296
0.06	$48^4 \times 144$	6.33	0.4	451	593	5.283
0.045	$64^3 \times 192$	4.56	0.2	323	801	7.115

Valence light-quark parameters

a(fm)	am_l/am_s	$am_q(\text{lattice units})$
0.12	0.1—0.4	0.0050, 0.0070, 0.0100, 0.0200, 0.0300, 0.03497, 0.0415, 0.0500
0.09	0.05	0.00155, 0.0031, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310
0.09	0.1 - 0.4	0.0031, 0.0047, 0.0062, 0.0093, 0.0124, 0.0261, 0.0310
0.06	0.1 - 0.4	0.0018, 0.0025, 0.0036, 0.0054, 0.0072, 0.0160, 0.0188
0.045	0.2	0.0018, 0.0028, 0.0040, 0.0056, 0.0084, 0.0130, 0.0160

Valence heavy-quark parameters

a(fm)	$\mid m_l/m_s \mid$	$\kappa_{ m crit}$	κ_{tune}	$\kappa_{ m sim.}$	u_0	r_1/a
0.12	0.4	0.14073	0.12452(15)(16)	0.1259	0.8688	2.821123
0.12	0.2	0.14091	0.12423(15)(16)	0.1254	0.8677	2.738591
0.12	0.14	0.14095	0.12423(15)(16)	0.1254	0.8678	2.738591
0.12	0.1	0.14096	0.12423(15)(16)	0.1254	0.8678	2.738591
0.09	0.4	0.139052	0.12737(9)(14)	0.1277	0.8788	3.857729
0.09	0.2	0.139119	0.12722(9)(14)	0.1276	0.8782	3.788732
0.09	0.14	0.139134	0.12718(9)(14)	0.1275	0.8781	3.771633
0.09	0.1	0.139173	0.12714(9)(14)	0.1275	0.8779	3.754593
0.09	0.05	0.13919	0.12710(9)(14)	0.1275	0.877805	3.737613
0.06	0.4	0.137582	0.12964(4)(11)	0.1295	0.8881	5.399129
0.06	0.2	0.137632	0.12960(4)(11)	0.1296	0.88788	5.353063
0.06	0.14	0.137667	0.12957(4)(11)	0.1296	0.88776	5.330159
0.06	0.1	0.137678	0.12955(4)(11)	0.1296	0.88764	5.307340
0.045	0.2	0.13664	0.130921(16)(70)	0.1310	0.89511	7.208234

Correlator stability

Correlator fit: n-states

Correlator fit: smearing

Correlator fit: matrix element

Correlator fit: random sampling

48

ChiPT stability

Analytic terms and HM χPT

 $F_i^{\text{NLO}} = F_i^{\text{pref.}} - F^{\text{NNLO}}$

MA

$$F_i^{\text{pref.}} = F_i^{\text{logs}} + F^{\text{NLO}} + F^{\text{NNLO}} + F_i^{\text{HQ error}} - F_i^{\kappa\text{-tune}} - F_i^{\text{renorm}}$$

$$F_i^{\rm NNLO} = F_i^{\rm pref.}$$

$$F_i^{\rm gen. \ NNLO} = F_i^{\rm pref.} + F^{\alpha_s a^2}$$

$$F_i^{\rm NNNLO} = F_i^{\rm pref.} + F^{\rm NNNLO}$$
 Of O3 O4 O5 O5 O.55 O.66 O.77 O.18 O.32 O.30 O.28 O.12 O.13 O.57 O.60 O.63 O.66 O.21 O.24 Matrix element $[r_1^3]$

Heavy quark discretization errors

$$F_i^{\text{pref.}} = F_i^{\text{logs}} + F^{\text{NLO}} + F^{\text{NNLO}} + F_i^{\text{HQ error}} - F_i^{\kappa\text{-tune}} - F_i^{\text{renorm}}$$

Renormalization errors

$$F_i^{\text{pref.}} = F_i^{\text{logs}} + F^{\text{NLO}} + F^{\text{NNLO}} + F_i^{\text{HQ error}} - F_i^{\kappa\text{-tune}} - F_i^{\text{renorm}}$$

$$F_i^{\alpha_s} = F_i^{\text{pref.}} - F_i^{\xi_{ii}} - F_i^{\xi_{ij}}$$

$$F_i^{\alpha_s^2 \text{ diag.}} = F_i^{\text{pref.}} + F_i^{\xi_{ij}}$$

$$F_i^{\alpha_s^3 \text{ diag.}} = F_i^{\text{pref.}} - F_i^{\psi_{ii}}$$

$$F_i^{\alpha_s^2 \text{ comp.}} = F_i^{\text{pref.}}$$

$$F_i^{\alpha_s^3 \text{ comp.}} = F_i^{\text{pref.}} - F_i^{\psi_{ii}} - F_i^{\psi_{ij}}$$

Data cuts in chiral extrapolation

Preferred: $\{\mathcal{O}_1,\mathcal{O}_2,\mathcal{O}_3\}$ and $\{\mathcal{O}_4,\mathcal{O}_5\}$ simultaneous w/ all data

Individual: 5 operators fit individually

 $m_{val} < 560 MeV$: Drop valence quarks around ho mass

a < 0.12fm: Drops 0.12fm ensembles (check continuum extrap.)

